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Complex behaviors are often driven by an internal model, which
integrates sensory information over time and facilitates long-term
planning to reach subjective goals. A fundamental challenge in
neuroscience is, How can we use behavior and neural activity
to understand this internal model and its dynamic latent vari-
ables? Here we interpret behavioral data by assuming an agent
behaves rationally—that is, it takes actions that optimize its sub-
jective reward according to its understanding of the task and
its relevant causal variables. We apply a method, inverse ratio-
nal control (IRC), to learn an agent’s internal model and reward
function by maximizing the likelihood of its measured sensory
observations and actions. This thereby extracts rational and inter-
pretable thoughts of the agent from its behavior. We also provide
a framework for interpreting encoding, recoding, and decoding
of neural data in light of this rational model for behavior. When
applied to behavioral and neural data from simulated agents per-
forming suboptimally on a naturalistic foraging task, this method
successfully recovers their internal model and reward function, as
well as the Markovian computational dynamics within the neural
manifold that represent the task. This work lays a foundation for
discovering how the brain represents and computes with dynamic
latent variables.

cognition | neuroscience | computation | rational | neural coding

Understanding how the brain works requires interpreting
neural activity. The behaviorist tradition aims to understand

the brain as a black box solely from its inputs and outputs. Mod-
ern neuroscience has been able to gain major insights by looking
inside the black box, but still largely relates measurements of
neural activity to the brain’s inputs and outputs. While this is
the basis of both sensory neuroscience and motor neuroscience,
most neural activity supports computations and cognitive func-
tions that are left unexplained—we might call these functions
“thoughts.” To understand brain computations, we should relate
neural activity to thoughts. The trouble is, how does one measure
a thought?

We propose to model thoughts as dynamic beliefs that we
impute to an animal by combining explainable artificial intelli-
gence (XAI) cognitive models for naturalistic tasks with mea-
surements of the animal’s sensory inputs and behavioral outputs.
We define an animal’s task by the relevant dynamics of its world,
observations it can make, actions it can take, and the goals it
aims to achieve. The XAI models that solve these tasks gener-
ate beliefs, their dynamics, and actions that reflect the essential
computations needed to solve the task and generate behavior like
the animal. With these estimated thoughts in hand, we propose
an analysis of brain activity to find neural representations and
transformations that potentially implement these thoughts.

Our approach combines the flexibility of complex neural net-
work models while maintaining the interpretability of cognitive
models. It goes beyond black-box neural network models that
solve one particular task and find representational similarity with
the brain (1–3). Instead, we solve a whole family of tasks and then
find the task whose solution best describes an animal’s behav-
ior. We then associate properties of this best-matched task with
the animal’s mental model of the world and call it “rational”
since it is the right thing to do under this internal model of the

world. Our method explains behavior and neural activity based
on underlying latent variable dynamics, but it improves upon
the usual latent variable methods for neural activity that just
compress data without regard to tasks or computation (4–6). In
contrast, our latent variables inherit meaning from the task itself
and from the animal’s beliefs according to its internal model.
This provides interpretability to both our behavioral and neural
models.

We also want to ensure we can explain crucial neural com-
putations that underlie ecological behavior in natural tasks. We
can accomplish this by using tasks with key properties that ensure
our model solutions implement these neural computations. First,
a natural task should include latent or hidden variables: Animals
do not act directly upon their sensory data, as the data are merely
an indirect observation of a hidden real world (7). Second, the
task should involve uncertainty, since real-world sense data are
fundamentally ambiguous and behavior improves when weighing
evidence according to its reliability. Third, relationships between
latent variables and sensory evidence should be nonlinear in the
task, since if linear computation were sufficient, then animals
would not need a brain: They could just wire sensors to muscles
and compute the same result in one step. Fourth, the task should
have relevant temporal dynamics, since actions affect the future;
animals must account for this.

While natural tasks that animals perform every day do have
these properties, most neuroscience studies isolate a subset of
them for simplicity, such as two-alternative forced-choice tasks,
multiarmed bandits, or object classification. These have revealed
important aspects of neural computation, but miss some fun-
damental structure of brain computation. Recent progress war-
rants increasing the naturalism and complexity of the tasks and
models.

This paper makes progress toward understanding how the
brain produces complex behavior by providing methods to esti-
mate thoughts and interpret neural activity. We first describe
a model-based technique we call inverse rational control for
inferring latent dynamics which could underlie rational thoughts.
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Then we offer a theoretical framework about neural coding that
shows how to use these imputed rational thoughts to construct
an interpretable description of neural dynamics.

We illustrate these contributions by analyzing a task per-
formed by an artificial brain, showing how to test the hypothesis
that a neural network has an implicit representation of task-
relevant variables that can be used to interpret neural computa-
tion. As a case study, we choose a simple but ecologically critical
task—foraging—whose solution requires an agent to account for
the four crucial properties mentioned above: latent variables,
partial observability, nonlinearities, and dynamics. Our general
approaches should serve as valuable tools for interpreting behav-
ior and brain activity for real agents performing naturalistic
tasks.

Results I: Modeling Behavior as Rational
In an uncertain and partially observable environment, animals
learn to plan and act based on limited sensory information and
subjective values. To better understand these natural behaviors
and interpret their neural mechanisms, it would be beneficial to
estimate the internal model and reward function that explains
animals’ behavioral strategies. In this paper, we model animals
as rational agents acting optimally to maximize their own subjec-
tive rewards, but under a family of possibly incorrect assumptions
about the world. We then invert this model to infer the agent’s
internal assumptions and rewards and estimate the dynamics
of internal beliefs. We call this approach inverse rational con-
trol (IRC), because we infer the reasons that explain an agent’s
suboptimal behavior to control its environment.

This method creates a probabilistic model for an agent’s tra-
jectory of observations and actions and selects model parameters
that maximize the likelihood of this trajectory. We make assump-
tions about the agent’s internal model, namely that it believes
that it gets unreliable sensory observations about a world that
evolves according to known stochastic dynamics. We assume that
the agent’s actions are chosen to maximize its own subjectively
expected long-term utility. This utility includes both benefits,
such as food rewards, and costs, such as energy consumed by
actions; it should also account for internal states describing moti-
vation, like hunger or fatigue, that modulate the subjective utility.
Finally, we assume that the agent follows a stationary policy
based upon its mental model. This means that we cannot model
learning with our method, although we can study adaptation
and context dependence as long as our model represents these
variables and their dynamics. We use the agent’s sequence of
observations and actions to learn the parameters of this inter-
nal model for the world. Without a model, inferring both the
rewards and latent dynamics is an underdetermined problem
leading to many degenerate solutions. However, under reason-
able model constraints, we demonstrate that the agent’s reward
functions and assumed dynamics can be identified. Our learned
parameters include the agent’s assumed stochastic dynamics of
the world variables, the reliability of sensory observations about
those world states, and subjective weights on action-dependent
costs and state-dependent rewards.

Partially Observable Markov Decision Process. To define the
inverse rational control problem, we first formalize the agent’s
task as a partially observable Markov decision process (POMDP)
(Fig. 1A) (8), a powerful framework for modeling agent behav-
ior under uncertainty. A Markov chain is a temporal sequence
of states s ∈S for which the transition probability T to the next
state depends only on the current state, not on any earlier ones:
T (st+1|s0:t) =T (st+1|st). A Markov decision process (MDP) is
a Markov chain where an agent can influence the world state
transitions by deciding to take an action a ∈A, changing the tran-
sitions to be T (st+1|st , at). At each time step the agent receives
a reward or incurs a cost (negative reward) that depends on
the world state and action, R(st , at). The agent aims to choose

A

B

Fig. 1. (A and B) Graphical model of a POMDP (A) and the IRC problem
(B). Open circles denote latent variables, and solid circles denote observable
variables. For the POMDP, the agent knows its beliefs but must infer the
world state. For IRC, the scientist knows the world state but must infer the
beliefs. The real-world dynamics depend on parameters φ, while the belief
dynamics and actions of the agent depend on parameters θ, which include
both its assumptions about the stochastic world dynamics and observations
and its own subjective rewards and costs.

actions that maximize its value V , measured by total expected
future reward (negative cost) with a temporal discount fac-
tor γ ∈ (0, 1), so that V =

〈∑∞
t=1 γ

tR(st , at)
〉
p(s1:∞,a1:∞)

, where
the angle brackets denote an average with respect to the sub-
scripted distribution. Actions are drawn from a state-dependent
probability distribution called a policy, π(a|st), which may be
concentrated entirely on one action. In a normal MDP, the
agent can fully observe the current world state, but must plan
for an unknown future. In a POMDP, the agent again does not
know the future, but does not even know the current world state
exactly. Instead the agent gets only unreliable observations o ∈Ω
about it, drawn from the distribution ot ∼O(o|st). The agent’s
goal is still to maximize the total expected temporally discounted
future reward. A POMDP is a tuple of all of these mathematical
objects: (S,A, Ω,R,T ,O , γ). Different tuples reflect different
tasks.

Optimal solution of a POMDP requires the agent to compute
a time-dependent posterior probability over the world state s ,
given its history of observations and actions. Knowledge of all
of that history can be summarized concisely in a single distribu-
tion, the posterior B(s). We consider this to reflect the belief of
the agent about its current world state. It is useful to define a
more compact belief state b as a set of sufficient statistics that
completely summarize the posterior, so we can write B(st |bt) =
B(st |o1:t , a0:t−1). This belief state can be expressed recursively
using the Markov property as a function of its previous value (SI
Appendix, Eq. 1).

We can express the entire partially observed MDP as a fully
observed MDP called a belief MDP, where the relevant fully
observed state is not the world state s but instead the agent’s

29312 | www.pnas.org/cgi/doi/10.1073/pnas.1912336117 Wu et al.
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own belief state b (9). To do so, we must reexpress the transitions
and rewards as a function of these belief states (SI Appendix,
Eqs. 5 and 7). The optimal agent then determines a value func-
tion Q(b, a) over this belief space and allowed actions, based
on its own subjective rewards and costs. This value can be
computed recursively through the Bellman equation (10) (SI
Appendix, Eq. 8). The optimal policy deterministically selects
actions maximizing the state-action value function. An alterna-
tive stochastic policy samples actions from a softmax function on
value, π(a|b)∼ 1

Z
exp (Q(b, a)/τ)with a temperature parameter

τ and normalization constant Z , giving the agent some chance
of choosing a suboptimal action. In the limit of a low temper-
ature τ we recover the optimal policy, but a real agent may
be better described by a stochastic policy with some controlled
exploration. Similarly, we can introduce stochasticity on top of
the belief dynamics dictated by Bayes’ rule, allowing for lapses,
gradual forgetting, or bounded rationality.

Inverse Rational Control. Despite the appeal of optimality, ani-
mals rarely appear optimal in experimental tasks and not just
by exhibiting more randomness. Short of optimality, what princi-
pled guidance can we have about an animal’s actions that would
help us understand its brain? One possibility is that an animal is
rational—that is, optimal for different circumstances than those
being tested. Here we show how to analyze behavior assuming
that agents are rational in this sense. The core idea is to parame-
terize possible strategies of an agent by those tasks under which
each one is optimal and find which of those best explains the
behavioral data.

We specify a family of POMDPs where each member has
its own task dynamics, observation probabilities, and subjec-
tive rewards, together constituting a parameter vector θ. These
different tasks yield a corresponding family of optimal agents,
rather than a single optimized agent. We then define a log-
likelihood over the tasks in this family, given the experimentally
observed data and marginalized over the agent’s latent beliefs
(Fig. 1B):

L(θ) = log

∫
db1:T p(b1:T , o1:T , a1:T , s1:T |θ,φ). [1]

In other words, we find a likelihood over which tasks an agent
solves optimally. In [1], φ and s1:T are known quantities in the
experimental setup that determine the world dynamics. Since
they affect only other observed quantities in the graphical model,
they do not affect the model likelihood over θ (SI Appendix).

This mathematical structure connects interpretable models
directly to experimentally observable data, allowing us to formal-
ize important scientific problems in behavioral neuroscience. For
example, we can maximize the likelihood to find the best inter-
pretable explanation of an animal’s behavior as rational within a
model class, as we show below. We can also compare categori-
cally different model classes that attribute to the agent different
reward structures or assumptions about the task.

The log-likelihood 1 seems complicated, as it depends on
the entire sequence of observations and actions and requires
marginalization over latent beliefs. Nonetheless it can be calcu-
lated using the Markov property of the POMDP: The actions and
observations constitute a Markov chain where the agent’s belief
state is a hidden variable. We show that it is possible to exploit
this structure to compute this likelihood efficiently (SI Appendix).

Challenges and Solutions for Rationalizing Behavior. To solve the
IRC problem, we need to parameterize the task, beliefs, and
policies, and then we need to optimize the parameterized log-
likelihood to find the best explanation of the data. This raises
practical challenges that we need to address.

Our core idea for interpreting behavior is to parameterize
everything in terms of tasks. All other elements of our models are

ultimately referred back to these tasks. Consequently, the beliefs
and transitions are distributions over latent task variables, the
policy is expressed as a function of task parameters and prefer-
ences, and the log-likelihood is a function of the task parameters
that we assume the agent assumes.

Thus, whatever representations we use for the belief space
or policy, we need to be able to propagate our optimization
over the task parameters through those representations. This
is one requirement for practical solutions of IRC. A second
requirement is that we can actually compute the optimal policies.

Efficient representation of general beliefs and transitions is
hard since the space of probabilities is much larger than the
state space it measures. The belief state is a probability distri-
bution and thus takes on continuous values even for discrete
world states. For continuous variables the space of probabili-
ties is potentially infinite-dimensional. This poses a substantial
challenge both for machine learning and for the brain, and find-
ing neurally plausible representations of uncertainty is an active
topic of research (11–16). We consider two simple methods to
solve IRC using lossy compression of the beliefs: discretization
or distributional approximation. We then provide a concrete
example application in the discrete case.
Discrete beliefs and actions. If we have a discrete state space,
then we can use conventional solution strategies for MDPs. For
a small enough world space, we can exhaustively discretize the
belief space and then solve the belief MDP problem with stan-
dard MDP algorithms (10, 17). In particular, the state-action
value function Q(b, a) under a softmax policy π(a|b) can be
expressed recursively by a Bellman equation, which we solve
using value iteration (9, 10). The resultant value function then
determines the softmax policy π and thereby determines the
policy-dependent term in the log-likelihood 1. To solve the IRC
problem we can directly optimize this log-likelihood, for example
by greedy line search (SI Appendix). An alternative in higher-
dimensional problems is to use expectation–maximization to find
a local optimum, with a gradient ascent M step (18, 19) that we
compute exactly (SI Appendix).
Continuous beliefs and actions. The computational expense of
the discrete solution grows rapidly with problem size and
becomes intractable for continuous state spaces and continuous
controls. One practical choice is to continually update a finite set
of summary statistics as for an extended Kalman filter. Alterna-
tively, it may be tractable to learn and use a more general set
of statistics (16). Rational control with continuous actions also
requires us to implement a flexible family of continuous poli-
cies π that map from beliefs to actions. We use deep neural
networks to implement these policies (20). Deep-learning meth-
ods are commonly used in reinforcement learning to provide
flexibility, but they lack interpretability: Information about the
policy is distributed across the weights and biases of the network.
Crucially, to maintain interpretability, we parameterize this fam-
ily by the task. Specifically, we provide the model parameters θ
as additional inputs to a policy network, at =π(bt , θ;W ), and
train its weights W to approximate a family of optimal policies
simultaneously over a prior distribution on task parameters p(θ)
(20). This allows the network to generalize its optimal strategies
across POMDPs in the task family and allows us to easily maxi-
mize the likelihood (Eq. 1) by gradient ascent using autodiffer-
entiation (20).∗

Application to Foraging. We applied our analyses to understand
the workings of a neural network performing a foraging task. The
task requires an agent to combine unreliable sensory data with an

*Even when the policy is implemented by a neural network, there is no need for that
network architecture to match the architecture of the brain it aims to interpret, as long
as it can be trained to match an optimal input–output function from beliefs to actions
for the relevant task family.
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internal memory to infer when and where rewards are available
and how to best acquire them. We train an artificial recurrent
neural network to solve this task in a suboptimal but rational way
and use IRC to infer its assumptions, subjective preferences, and
beliefs.
Task description. Two locations (“feeding boxes”) have hidden
food rewards that appear and disappear according to indepen-
dent telegraph processes with specified transition probabilities
(Fig. 2) (21). The boxes provide unreliable color cues about
the current reward availability, ranging from blue (probably
unavailable) to red (probably available). There are three possible
locations for the agent: the locations of boxes 1 and 2 and a mid-
dle location 0. We include a small “grooming” reward for staying
at the middle location, to allow the agent to stop and rest. A few
discrete actions are available to the agent: It can push a button to
open a box to either get the reward or observe its absence, it can
move toward a new location, or it can do nothing. Traveling and
pushing a button to open the box each have a cost, so the agent
does not benefit from repeating fruitless actions. When a button-
press action is taken to open a box, any available reward there
is acquired. Afterward, the animal knows there is no more food
available in the box (since it was either unavailable or consumed)
and the belief about food availability in that box is reset to zero.
The specific values of these parameters used in our experiments
are described in SI Appendix.
Neural network agent. To test the IRC algorithm and our sub-
sequent neural coding analyses, we wanted a synthetic brain for
which we could assess the ground truth. We therefore used imita-
tion learning to train a recurrent neural network to reproduce the
policy of one rational agent. However, to favor representations
that generalize well and are thereby more likely to represent
beliefs, we actually trained the network to reproduce optimal
policies on a family of tasks. The inputs to this network included
not only the sensory observations of location, color cues, and
rewards, but also the task parameters (SI Appendix, Fig. S1A).
For each task we trained the network output to match the policy
of a corresponding “teacher” that optimally solves that POMDP
problem (Materials and Methods). After training, the outputs of
the neural network closely matched the teachers’ policies (SI
Appendix, Fig. S1B). Any task-relevant beliefs that emerge auto-
matically through training (22) are encoded implicitly only in the
large population of neurons.

Finally, to impose suboptimality upon our neural network
agent, we misled it by providing inputs that specified the wrong
set of task parameters θ: These did not match the parameters φ
of the true test task. When we challenged this simulated rational
brain with a foraging task, we obtained a time series of obser-
vations ot , actions at , and neural activity rt . Together these
constituted the experimental measurements for our suboptimal
agent.
Inverse rational control for foraging. In our target applications,
we do not know the agent’s assumed world parameters, their

box 1 reward
availability

box 1 color

box 2 reward
availability
box 2 color

travel
reward

available?

Foraging task

location

got reward
after push?

yes no

time

push

Agent’s
location

box 1
center
box 2

Fig. 2. Illustration of foraging task with latent dynamics and partially
observable sensory data. The reward availability in each of the two boxes
evolves according to a telegraph process, switching between available (red)
and unavailable (blue), and colors give the animal an ambiguous sensory
cue about the reward availability. The agent may travel between the loca-
tions of the two boxes. When a button is pushed to open a box, the agent
receives any available reward.

subjective costs, or the amount of randomness (softmax policy
temperature). Our goal is to estimate a simulated agent’s internal
model and belief dynamics from its chosen actions in response to
its sensory observations. We infer all of these using IRC.

The actions and sensory evidence (color cues, locations, and
rewards) obtained by the agent all constitute observations for
the experimenter’s learning of the agent’s internal model. Based
on 5,000 color observations, 1,595 movements, and 566 button
presses, IRC infers the parameters of the internal model that
best explain the behavioral data (Fig. 3A). Fig. 3B shows that
IRC correctly imputes a rational model to the neural network,
whose parameters closely match those of its teacher.

Data limitations imply some discrepancy between the teacher’s
true parameters and the estimated parameters which can be
reduced with more data. With the estimated parameters, we are
able to infer a posterior over the dynamic beliefs (Fig. 3C). (Note
that this is an experimenter’s posterior over the agent’s subjective
posterior!) Although we do not know what the neural network
believes, the inferred posterior is consistent with the imitated
teacher’s subjective probabilities of food availability in each box.
The inferred distributions over beliefs reveal strong correlations
between the belief states of the teacher and the belief states
imputed to the neural network (Fig. 3D).

Fig. 3 E–H shows that the teacher, the artificial brain, and the
inferred agent choose actions with similar frequencies, occupy
the three locations for the same fraction of time, and wait simi-
lar amounts of time between pushing buttons or traveling. This
demonstrates that the IRC-derived agent generates behaviors
that are consistent with behaviors of the agent from which it
learned.

Results II: Neural Coding
We do not presume that any real brain explicitly calculates a
solution to the Bellman equation, but rather learns a policy by
combining experience and mental modeling. We assume that,
with enough training, the result is an agent that behaves “as
if” it were solving the POMDP (Fig. 4A). Next, we present
a framework for understanding brain computations that could
implement such behaviors.

To move toward more interpretable computations, our anal-
ysis does not focus on neural responses, but rather on the
task-relevant information encoded in those responses. Targeted
dimensionality reduction abstracts away the fine details of the
neural signals in favor of an algorithmic- or representational-
level description. This decreases how many parameters char-
acterize the dynamics, substantially reducing overfitting. More
importantly, it can avoid the massive degeneracies inherent
in neuron-level mechanisms: Different neural networks could
have entirely different neural dynamics but could share the
task-relevant computations. This indicates how a deeper, more
invariant understanding of neural computations is more possible
at the algorithmic level than at the mechanistic level (23).

Analysis of the linked processes of encoding, recoding, and
decoding can help interpret task-relevant computations. These
processes correspond to representation, dynamics, and action.
The brain’s “encoding” specifies the task-relevant and -irrelevant
coordinates of neural activity (Fig. 4B). “Recoding” describes
how that encoding is transformed over time and space by neural
processing (Fig. 4C). “Decoding” describes how those estimates
predict future actions (Fig. 4D).†

The neural coding framework makes one crucial assumption:
The neural data must be sufficient to capture the task-relevant

† In our use of the term decoding, we are taking the brain’s perspective. The term more
often reflects the scientist’s perspective, where the scientist decodes brain activity to
estimate encoding quality. Instead, we reserve the term decoding to describe how neu-
ral activity affects actions: We say that the brain decodes its own activity to generate
behavior.

29314 | www.pnas.org/cgi/doi/10.1073/pnas.1912336117 Wu et al.
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Fig. 3. Successful recovery of agent model by
inverse rational control. The agent was a neu-
ral network trained to imitate a suboptimal but
rational teacher and tested on a novel task. (A)
The estimated parameters converge to the optimal
point of the observed data log-likelihood (white
star). Since the parameter space is high-dimensional,
we project it onto the first two principal compo-
nents u, v of the learning trajectory for θ (blue).
The estimated parameters differ slightly from the
teacher’s parameters (green dot) due to data lim-
itations. (B) Comparison of the teacher’s parame-
ters and the estimated parameters. Error bars show
95% confidence intervals (CI) based on the Hessian
of log-likelihood (SI Appendix, Fig. S2). (C) Esti-
mated and the teacher’s true marginal belief dynam-
ics over latent reward availability. These estimates
are informed by the noisy color data at each box
and the times and locations of the agent’s actions.
The posteriors over beliefs are consistent with the
dynamics of the teacher’s beliefs (blue line). (D)
Teacher’s beliefs versus IRC belief posteriors aver-
aged over all times when the teacher had the same
beliefs, p̄ = 〈p(b̂t|a1:T , o1:T )|bt〉. These mean poste-
riors p̄ concentrate around the true beliefs of the
teacher. (E–H) Inferred distributions of (E) actions,
(F) residence times, (G) intervals between consec-
utive button-presses, and (H) intervals between
movements.

neural processes. The important aspects are different for encod-
ing, recoding, and decoding. To describe the encoding, we
need to measure the right neurons at the right resolution to
be sensitive to the task-relevant properties, which may include
nonlinear statistics (24, 25) and will certainly exhibit some
variability (26). To describe the recoding accurately, all mea-
sured changes in neural state must depend only on the current
state. In other words, the measured neural dynamics should be
Markovian. Markovian dynamics are an essential property of
any causal system. To describe decoding accurately, we must
measure the neural signals that eventually drive the behav-
ior. If the chosen state space lacks any of this relevant infor-
mation due to missing neurons, slow measurements, lossy
postprocessing, etc., then we will see unexplainable variabil-
ity in the encoded variables, recoding dynamics, and decoded
actions.

As long as we do measure the right signals, our neural coding
framework applies equally well to spiking, multiunit activity, cal-
cium concentration, neurotransmitter concentration, local field
potentials, conventional frequency bands, or any other signals
hypothesized to contain task-relevant information. For example,
if distinct neural frequency bands encode distinct information or
interactions, then slow firing rates alone will not be sufficient to
capture dynamics. Nonetheless, in such cases we may be able to
construct a sufficient state space by augmenting the neural states,

for example by explicitly including multiple frequency bands or
the recent firing-rate history.

Once we fit a neural encoding, we subsequently concentrate
only on the task-relevant coordinates specified by that encod-
ing. By construction, this level of explanation need not capture
every facet of neural responses nor the physical mechanism
by which they evolve. Nonetheless, it would be great progress
if we can account for stimulus- and action-dependent neural
dynamics within task-relevant coordinates (27) that explain how
temporal sequences of sensory signals interact in the brain and
predict behavior. Although this “as if” description cannot legit-
imately claim to be causal, it can be promoted to a causal
description since it does provide useful predictions for causal
tests about what neural features should influence computation
and action (28, 29).

Just as a complete description of neural mechanisms requires
those dynamics to be Markovian, a complete lower-dimensional
description of task-relevant computations also requires that the
dynamics are Markovian. In other words, we seek task-relevant
coordinates whose updates depend only on those coordinates.
Otherwise we will again find unexplained variability in the task-
relevant dynamics (SI Appendix, Fig. S3) or actions.

Fig. 5 provides a conceptual illustration of the geometry
of task-relevant and -irrelevant coordinates in neural activity
space and the types of errors that can occur when measuring

Wu et al. PNAS | November 24, 2020 | vol. 117 | no. 47 | 29315
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A

B C D

Fig. 4. Schematic for analyzing a dynamic neural code. (A) Graphical model of a POMDP problem with a solution implemented by neurons implicitly
encoding beliefs. (B) We find how behaviorally relevant variables (here, beliefs) are encoded in measured neural activity through the function b̌t =ϕenc(rt).
(C) We then test our hypothesis that the brain recodes its beliefs rationally by testing whether the dynamics of the behaviorally estimated belief b̂ match
the dynamics of the neurally estimated beliefs b̌, as expressed through the update dynamics f̂dyn(b̂t , ot) and recoding function f̌rec(b̌t , ot). (D) Similarly, we
test whether the brain decodes its beliefs rationally by comparing the behaviorally and neurally derived policies π̂act and π̌dec. Quantities estimated from
behavior or from neurons are denoted by up-pointing or down-pointing hats,ˆand ,̌ respectively (SI Appendix, Table S1).

task-relevant neural computation. Neural activity occupies a
manifold of much lower dimension than the ambient space of
all possible neural responses (30). Within that manifold there
is further structure, with task-relevant variables tracing out
submanifolds related to each other by task-irrelevant neural
variations.

In principle, this framework can apply to many different tasks
and computations. For concreteness, here we present our anal-
ysis using the computations and variables inferred by inverse
rational control. The inferred internal model allows us to impute
the agent’s time-dependent beliefs b about the partially observed
world state s. Such a belief vector might include the full posterior
over the world state, B(st |o1:t , a1:t−1) as we used for the discrete
IRC above, or a point estimate ŝ of the world state and a measure
of uncertainty about it, say a covariance Σs , as in the Gaussian
approximation we have used for continuous IRC (20). To us, as
scientists, the agent’s beliefs are latent variables, so our algorithm
can at best create a posterior p(b) over those beliefs or a point
estimate b̂ indicating the most probable belief. Here we base

our analyses on a point estimate over beliefs. Below we describe
our general analysis approach and apply it to understand the
neural computations implemented during foraging by the sim-
ulated brain.

Encoding. Given beliefs b̂t imputed by IRC, we can estimate
how they are encoded in the neural responses r. An encoding
defines a response distribution p(rt |b̂t), which determines both
task-relevant and -irrelevant coordinates (Fig. 5A). To find what
is encoded by this probabilistic mapping, we use a (potentially
nonlinear) readout function ϕenc(rt) fitted to minimize the dis-
crepancy between the behavioral target belief b̂t and the neural
estimate b̌t =ϕenc(rt) (Fig. 4B).‡ After training ϕenc to match

‡Estimates based on the behavioral model are consistently denoted by an up-pointing
hat, x̂, as distinguished from estimates based on the neural responses denoted by a
down-pointing hat, x̌, as indicated in SI Appendix, Table S1.

29316 | www.pnas.org/cgi/doi/10.1073/pnas.1912336117 Wu et al.
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A B C

Fig. 5. Conceptual illustration of encoding and recoding. (A) Neural responses r inhabit a manifold (blue volume, here three-dimensional) embedded in
the high-dimensional space of all possible neural responses. A neural encoding model divides this manifold into task-relevant and -irrelevant coordinates
(blue and purple axes). We must estimate these coordinates from training data, given some inferred task-relevant targets b. According to this encoding,
many activity patterns r can correspond to the same vector of task variables b. Any particular neural trajectory (white curve) is just one of many that
would trace out the same task-relevant projection b(t) (black curves). The set of all neural activities consistent with one task-relevant trajectory therefore
spans a manifold (gray ribbon). (B) After fitting an estimator of the task variables using training data, we can measure how well the encoding describes
the task variables in a new testing dataset. Different encodings (red and green volumes) divide the same neural manifold differently into relevant and
irrelevant coordinates, and the task variables b̌ estimated from these neural encodings (red and green curves) will deviate in different ways from the
variables b̂ inferred from behavior (black). (C) The testing error of these neurally derived task variables (red, green) will be larger than the training error
(blue). Task-relevant variables b̌ derived from different encoding models may have the same total errors, but may nonetheless have different recoding
dynamics. Here the smoother green dynamics are closer to the behaviorally inferred dynamics than the rougher red dynamics, which implies that these
task-relevant dimensions better capture the computations implied by inverse rational control. SI Appendix, Fig. S3 provides more detail of good and bad
recodings.

the behavioral targets b̂ and ignore task-irrelevant aspects of the
neural responses, we can then cross-validate it on new estimates
b̌ from fresh neural data. Since data are finite and noisy, the
models invariably have some errors caused by deviations between
the estimated task-relevant coordinates and the true ones. These
errors are smaller for the training data and larger for fresh test-
ing data. Fits from different encoding models partition the neural
manifold differently and will thus generally have different testing
errors (Fig. 5B).

Recoding. Recoding describes the changes in a neural encoding.
While neural dynamics may affect every dimension of neural
activity, we focus only on the low-dimensional, interpretable
dynamics within the neural manifold. By construction, those
dynamics reflect the changes in the agent’s beliefs.

The rational control model predicts that beliefs are updated
by sensory observations and past beliefs, with interactions that
are determined by the internal model according to a func-
tion bt+1 = fdyn(bt , ot) + ηt , where fdyn and ηt reflect the task-
relevant and -irrelevant parts of the dynamics (the latter absorbs
stochastic components as well as deterministic components that
depend on uncontrolled task-irrelevant dimensions; Fig. 5 and
SI Appendix, Fig. S3). If our neural analysis correctly identifies
dynamics responsible for behavior, then the beliefs b̌ estimated
from the neural encoding should be recoded over time follow-
ing those same update rules. We estimate this neural recoding
function f̌rec(b̌t , ot) directly from the sequence of neurally esti-
mated beliefs b̌ by minimizing differences between the actual
and predicted future neural beliefs. We then compare f̌rec to the
update dynamics posited by the behavioral model f̂dyn (Fig. 4C).
(Note that we should compare these only over the distribution
of experienced beliefs, i.e., those beliefs for which the recoding
function matters in practice.) Agreement between the behavioral
belief dynamics and the neurally derived belief dynamics implies
that we have successfully understood the recoding process. Even
for good encoding models this is not guaranteed, since activ-
ity outside the encoding coordinates could influence the neural
dynamics: Two different fitted encoding models could provide

equal reconstruction errors, and yet because of limited data or
model mismatch only one has neural dynamics that match the
behaviorally derived dynamics (Fig. 5 B and C).

Decoding. These encodings and recodings do not matter if the
brain never decodes that information into behavior. We can
evaluate how the brain uses its information by fitting a policy
π̌(a|b̌) to predict observed actions directly from the neurally
encoded beliefs. We then test the hypothesis that the brain
decodes neurally encoded rational thoughts by comparing that
neutrally derived policy π̌dec against the behavioral policy, π̂act

(Fig. 4D).

Application to Simulated Foraging Agent. Fig. 6 presents the
results of applying this neural coding framework to look inside
the brain of our simulated agent while it forages.

To evaluate the encoding for our synthetic brain, we assume
that beliefs bt are linearly encoded instantaneously in neural
activity rt . After performing linear regression of behaviorally
derived beliefs b̂ against neural activity r, we can estimate
other beliefs b̌ from previously unseen neural data. Fig. 6A shows
that these beliefs estimated from neural data are accurate.

Fig. 6B shows that the recoding dynamics obtained from
the neural belief dynamics also match the dynamics described
by the rational model. We characterize these neural dynamics
using kernel ridge regression between b̌t and b̌t+1 (Materials
and Methods). The resultant temporal changes in the neutrally
derived beliefs ∆b̌t = f̌rec(b̌t , ot)− b̌t agree with the correspond-
ing changes in the behavioral model beliefs, ∆b̂t = f̂dyn(b̂t , ot)−
b̂t . Although some of these changes are driven directly by the
sensory observations (colors), that only explains part of the
belief updates: Even conditioned on a given sensory input at
one time, the updates agree between the neurons and the
behavioral model. This provides evidence that we understand
the internal model that governs recoding at the algorithmic
level.

To account for the discrete actions space, our example analy-
sis of neural decoding uses nonlinear multinomial regression to

Wu et al. PNAS | November 24, 2020 | vol. 117 | no. 47 | 29317
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fit the probabilities π̌dec(a|b̌) of allowed actions as a function
of neurally derived beliefs (Materials and Methods). The resul-
tant decoding function and the rational policy π̂act match well
(Fig. 6C), providing evidence that we understand the decod-
ing process by which task-relevant neural activity generates
behavior.

Discussion
This paper presents an explainable AI paradigm to infer an
internal model, latent beliefs, and subjective preferences of a
rational agent that solves a complex dynamic task described
as a partially observable Markov decision process. We fitted
the model by maximizing the likelihood of the agent’s sen-
sory observations and actions over a family of tasks. We then
described a neural coding framework for testing whether the
imputed latent beliefs encoded in a low-dimensional mani-
fold of neural responses are recoded and decoded in a man-
ner consistent with this behavioral model. We demonstrated
these two contributions by analyzing the neural coding of an
implicit computational model by an artificial neural network
trained to solve a simple foraging task requiring memory,
evidence integration, and planning. Our method successfully
recovered the agent’s internal model and subjective preferences
and found neural computations consistent with that rational
model.

Related Work. Our approach generalizes previous work in arti-
ficial intelligence on the inverse problem of learning agents by
observing behavior. Methodologically, other studies of inverse
problems address parts of inverse rational control, typically with
the goal of getting artificial agents to solve tasks by learning
from demonstrations of expert behavior. Inverse reinforcement
learning (IRL) tackles the problem of learning how an agent
judges rewards and costs based on observed actions (31), but
assumes a known dynamics model (19, 32). This approach has
even been applied to learn the computational goal of a recur-
rent network (33). Conversely, inverse optimal control (IOC)
learns the agent’s internal model for the world dynamics (34)
and observations (35), but assumes the reward functions. In refs.

36 and 37 both reward function and dynamics were learned, but
only the fully observed MDP case is explored. We solve the
natural but more difficult partially observed setting and ensure
these solutions provide a scientific basis for interpreting animal
behavior.

As a cognitive theory, by positing a rational but possibly mis-
taken agent, our approach resembles Bayesian theory of mind
(BToM) (38–43). Previous work in BToM has considered tasks
with uncertainty about static latent variables that were unknown
until fully observed (43) or tasks with partially observed vari-
ables but simpler trial-based structure (38, 39). Here we allow
for a more natural world, with dynamic latent variables and
partial observability, and we infer models where agents make
long-term plans and choose sequences of actions. Where prior
work in BToM learned subjective rewards (43) or internal mod-
els (41), our inverse rational control infers both internal models
and subjective preferences in a partially observable world.

BToM studies have focused on models of behavior, whereas
we aim to connect dynamic model computations to brain
dynamics. Some work has posited a POMDP model for behav-
ior and hypothesized how specific brain regions might implement
the relevant computations (44). Here we demonstrate an analysis
framework to test such connections, by examining neural rep-
resentations of latent variables and showing how computa-
tional functions could be embodied by low-dimensional neural
dynamics.

While low-dimensional neural dynamics are an important
topic for studies of large-scale neural activity (1, 5, 6, 30),
few have been able to relate these dynamic activity patterns
to interpretable latent model variables. Far more commonly,
these low-dimensional manifolds are attributed to an intrinsi-
cally generated manifold (27, 45) or are related to measurable
quantities like sensory inputs or behavioral outputs (1, 46, 47).
Population activity in the visual system is known to relate to
latent representations of deep networks (2, 3). While this shows
that many task-relevant features extracted by machine-learning
solutions are also task relevant for the visual system, these fea-
tures account for neither temporal dynamics nor uncertainty, nor
are they readily interpretable (48). Our model-based analysis of

A B C

Fig. 6. Analysis of neural coding of rational thoughts. (A) Encoding: Neurally derived beliefs b̌ match behaviorally derived beliefs b̂ based on IRC. Cross-
validated neural beliefs are estimated from testing neural responses r using a linear estimator, b̌ = Wr + c, with the weight matrix fitted from separate
training data. (B) Recoding: Belief updates ∆b̌t from the neural recoding function match the corresponding belief updates from the task dynamics ∆b̂t .
Neural updates are estimated using nonlinear regression with radial basis functions (Materials and Methods). (C) Decoding: The policy π̌dec predicted by
decoding neural beliefs approximately matches the policy π̂act estimated from behavior by IRC. Neural policy is estimated from actions a and neural beliefs
b̌ using nonlinear multinomial regression (Materials and Methods).
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population activity is currently our best bet for finding inter-
pretable computational principles.

Limitations and Generalizations. We demonstrated our approach
to understanding cognition and neural computation by apply-
ing it to a task involving multiple important features, namely
partially observable latent variables with structured dynamics
requiring nonlinear computation. However, this foraging task is
still fairly simple. Our conceptual framework is much more gen-
eral and should be able to scale to more complex tasks. As we
showed, it can model common errors of cognitive systems, such
as inferring false beliefs derived from incorrect or incomplete
knowledge of task parameters. But it can also be used to infer
incorrect structure within a given model class. For example, it
is natural for animals to assume that some aspects of the world,
such as reward rates at different locations, are not fixed, even if
an experiment actually uses fixed rates (49). Similarly, an agent
may have a superstition that different reward sources are corre-
lated even when they are independent in reality. Given a model
class that includes such counterfactual relationships between
task variables, our method can test whether an agent holds these
incorrect assumptions. Our framework can also be generalized
to cases of bounded rationality (50) by incorporating additional
internal representational or computational constraints, such as
metabolic costs (51) or architectural constraints (52). However,
our approach does use model-based reinforcement learning and
thus does require a model. Like any model-based algorithm, it
can explain only behaviors we can represent by states and policies
that the model can generate. Moreover, even if the model can
express some policies in principle, it must be able to learn that
family of policies in practice. This can pose challenges that mod-
ern reinforcement learning methods are making rapid progress
in overcoming.

When there are insufficient data to distinguish possible ratio-
nal models, we may recover a sloppy model (53, 54) for which
multiple combinations of parameters have nearly the same
likelihood (Eq. 1). The curvatures of the observed data log-
likelihood (SI Appendix, Fig. S2) show that our models were
sufficiently constrained that all parameters were identifiable,
although some combinations produced more optimistic beliefs
compensated by higher action costs to generate similar action
sequences.

Our core assumption for the behavioral model is that animals
assume the world is Markovian, which leads them to use sta-
tionary policies. What if they do not, due to a changing task or
motivation? By including additional latent states, such as slow
context variables or an internal motivation state, we may recover
a stationary policy, and then our approach is again applicable.
That said, this will be a poor model while the animal is learning
something for the first time, and a higher-level rational learning
model will be required.

Our approach to creating interpretable rational models
requires that the policy receives inputs that are themselves
interpretable and rational, regardless of whether the policy is
implemented as an explicit POMDP solution or as a neural net-
work trained to optimality on the task family. Here our inputs
were belief states that fully summarize the posterior over the
current world state. While maintaining interpretability we could
also deliberately allow worse probabilistic representations, as
long as we choose a model class that specifies their structure.
For instance, we could permit hypotheses of factorized poste-
riors, tractable variational families (39, 55), random statistics
(16, 56, 57), or limited sampling (12, 58, 59). In addition, we
could hypothesize approximate inference algorithms associated
with these belief representations (60, 61). Among these hypothe-
ses, IRC could be used to find and compare the likelihoods
of observed action trajectories given rational agents with those
structured assumptions.

In more complex tasks, simplifying assumptions are likely to
be as crucial for the brain as they are for any algorithm: As
the number of task-relevant variables grows, the dimension-
ality of the full belief space grows prohibitively. In addition
to the structured approximations mentioned above, represen-
tation learning (62) can provide compressed representations of
sensory histories that are useful for performing tasks. In good
cases it can learn to represent sufficient statistics over world
states that are needed to guide actions and obtain rewards.
Large-scale tasks are now being solved with expressive neu-
ral networks (63, 64) that provide rich state representations,
but may not permit interpretation. This may be an unavoidable
limitation in a world of complex structure (65, 66). Or, near
any solution found by machine-learning optimization, there may
be other solutions that perform similarly while retaining inter-
pretability (67). Additionally, solutions that match the causal
structure of the environment are naturally more interpretable
and tend to generalize better (68, 69) and thus may be favored
by biological learning. It may be that the uninterpretable rep-
resentations found by brute-force model-free machine learning
are insufficiently constrained and that richer tasks, multitask
training, and priors favoring sparse causal interactions may
bias networks toward more human-interpretable representa-
tions (67, 69–71) that relate more closely to actionable latent
variables.

Conclusion. The success of our methods on simulated agents
suggests they could be fruitfully applied to experimental data
from real animals performing such foraging tasks (21, 72) or
to richer tasks requiring even more sophisticated computations.
XAI models help construct belief states and dynamics needed to
solve interesting tasks. This will provide useful targets for inter-
preting dynamic neural activity patterns, which in turn could help
identify the neural substrates of thought.

Materials and Methods
Inverse Rational Control. Full mathematical details for IRC, the foraging task,
and neural network training are available in SI Appendix. Parameters were
selected to expose interesting behaviors, such as balancing the relevance
of predictable dynamics with sensory cues. Code for the discrete case is
available at https://github.com/XaqLab/IRC TwoSiteForaging.

Neural Coding Analysis.
Encoding. We find an encoding matrix W̌ by regressing b̂ against r. This
produces neural estimates of task-relevant variables b̌ = W̌r + c for new
data.
Recoding. We find dynamics by regressing b̌t against (b̌t−1, ot) with
kernel ridge regression. The kernel functions are radial basis functions
with centers on discretized target beliefs and a width at half-max equal
to the spacing between discrete beliefs. This yields the recoding function
f̌rec(b̌t , ot) representing the nonlinear dynamics of the neural beliefs. We
compare the belief updates ∆b̌t = f̌(b̌t , ot)− b̌t from the recoding function
f̌rec(b̌t , ot) and the corresponding belief updates from the task dynamics
∆b̂t = f̂dyn(b̂t , ot)− b̂t .
Decoding. We compute the brain’s decoding function, i.e., an approximate
policy π̌dec, using nonlinear multinomial regression of b̌ against a with the
same radial basis functions as used in recoding. We use a feature space of
radial basis functions with centers on a 9× 9 grid over beliefs, with width
equal to the center spacing, and an outer product space over locations.
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